Nanomechanics of silicon nanowires
نویسندگان
چکیده
The stability and elasto-mechanical properties of tetragonal and cagelike or clathrate nanowires of Si are investigated and compared using molecular dynamics simulations. Our results show that cagelike nanowires, while possessing lesser density, are able to maintain their structural integrity over a larger range of strain conditions than the tetrahedral nanowires, making them a better candidate for structural strength, chemical sensor, and electronics applications under strain conditions. This could have important technological implications.
منابع مشابه
Computational nanomechanics and thermal transport in nanotubes and nanowires.
Representative results of computer simulation and/or modeling studies of the nanomechanical and thermal transport properties of an individual carbon nanotube, silicon nanowire, and silicon carbide nanowire systems have been reviewed and compared with available experimental observations. The investigated nanomechanical properties include different elastic moduli of carbon nanotubes, silicon nano...
متن کاملNanostructured silicon for studying fundamental aspects of nanomechanics
Nanomechanics features three-dimensional nanostructuring, which allows full exploitation of the mechanical degree of freedom on the nanometre scale. In this work a number of exemplifying experiments on nano-electromechanical systems realized in silicon materials will be presented. First an introduction to the underlying mechanics will be given and finite element methods required for simulations...
متن کاملNanomechanics of Silicon Nanowires via Symmetry-adapted Tight-binding and Classical Objective Molecular Dynamics
Stability and elastic response of the most promising ground state candidate Si nanowires with less than 10 nm in diameter are comparatively studied with objective molecular dynamics coupled with non-orthogonal tight-binding and classical potential models. The computationally-expensive tight-binding treatment becomes tractable due to the substantial simplifications introduced by the presented sy...
متن کاملArea Effect of Reflectance in Silicon Nanowires Grown by Electroless Etching
This paper shows that the reflectance in silicon nanowires (SiNWs) can be optimized as a function of the area of silicon substrate where the nanostructure growth. SiNWs were fabricated over four different areas of silicon substrates to study the size effects using electroless etching technique. Three different etching solution concentrations of silver nitrate (AgNO3) and hydroflu...
متن کاملNanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.
The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...
متن کامل